
Understanding Glyphosate and Glyphosate-resistance on Nutrient Sufficiency, Disease and Agricultural Sustainability

Don M. Huber

Emeritus Professor of Plant Pathology Purdue University, West Lafayette, IN

Parenting skills Look back and take inventory once in a while!

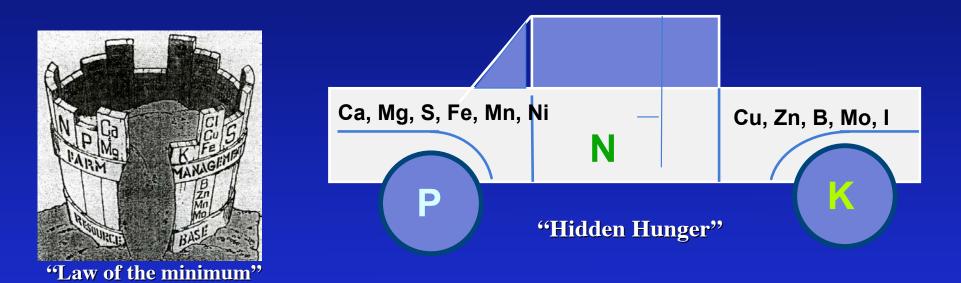
Hesitate!

Anticipate!

AVOID HAZARDS Bad Parenting!

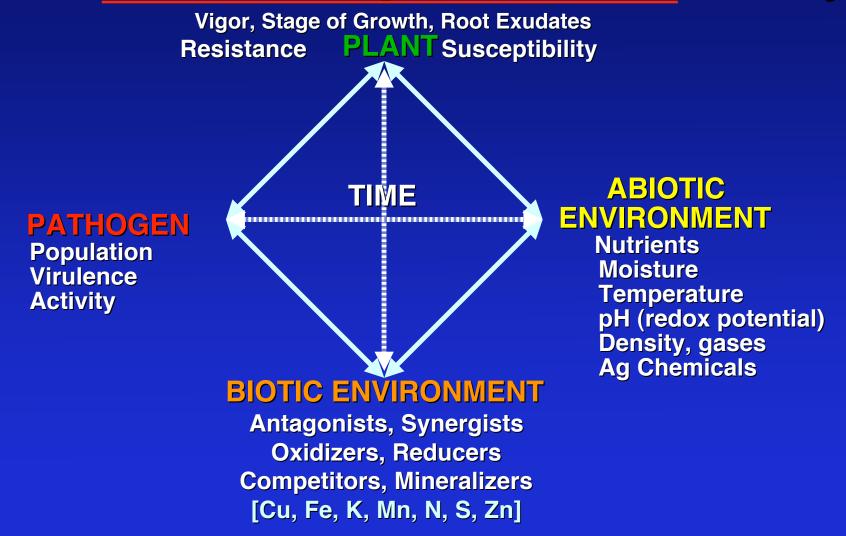
Understanding Glyphosate and Glyphosate-resistant Crops Impact on Nutrition, Disease & Sustainability

- Background
- Understanding glyphosate What it is and how it works
- Understanding glyphosate-resistance
 What it is and what it doesn't do
- Recognizing the interactions
 Symptoms nutrition, disease


- Fertilization of corn, soybeans, and cereals in a glyphosate weed management program
- The bigger picture

Photosynthesis and N-fixation

$\frac{Mn^{+2}}{6 CO_2 + 12 H_2O} \xrightarrow{\text{Chloroplast}} \frac{C_6H_{12}O_6}{Mg^{+2}} + 6 O_2$


The Harvest is SUGAR and PROTEIN

NUTRIENT BALANCE IS IMPORTANT BECAUSE EACH ELEMENT FUNCTIONS AS PART OF A DELICATELY BALANCED, INTERDEPENDENT SYSTEM WITH THE PLANT'S GENETICS AND THE ENVIRONMENT

Nutrient *BALANCE* may be a matter of <u>root function!</u> *"The roots may be the root of the problem!"* "The weak link may be underground!"

Interacting Factors Determining Nutrient Availability and Disease Severity

Changes in Agricultural Practices Change the Interactions

Crop Sequence	Tillage/No-till	Fertilization
Biotic environment Nutrition Nitrification Organic matter	Residue break down Soil density/aeration Pathogen survival Nutrient distribution Denitrification	Rate/form Time applied Source/assoc. ions Inorganic Organic
Effect of crop residue on nitrification % NO3	Herbicide usage Crop sequence effect on I	Deficient Sufficient Excess
100AlfalfaFallowTrachypoga80SoyaWheatBrachiaria80PeaOatConifers60CornBarley4020	Rotation Extractal Continuous Corn 1 Continuous soybeans 1 Soybean, wheat, corn 1 Wheat, corn, soybean 1	Metabolism of different
0 2 4 6 8 Weeks		80 ppm CHO + NH4 Amino Acids Acid Rhizosphere Alkaline

Cattle Cattle

Mn Availability & Biological Activity

pH: 5.2 7.8 Mn form: Mn²⁺ Biological Available: Yes No

Factors Affecting N Form, Mn Availability and Severity of Some Diseases*

Soil Factor or Cultural Practice	Nitrification	Effect on: Mn Availability	Disease Severity
Low Soil pH	Decrease	Increase	Decrease
Green Manures(some)	Decrease	Increase	Decrease
Ammonium Fertilizers	Decrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibitors	Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
Glyphosate		Decrease	Increase
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed	Increase	Decrease	Increase
*Potato scab, Rice blast,	Take-all. Phym	natotrichum root ro	t. Corn stalk rot

Nutrients are:

Components of plant parts as well as

Activators,

Inhibitors,

and Regulators

of Physiological Processes

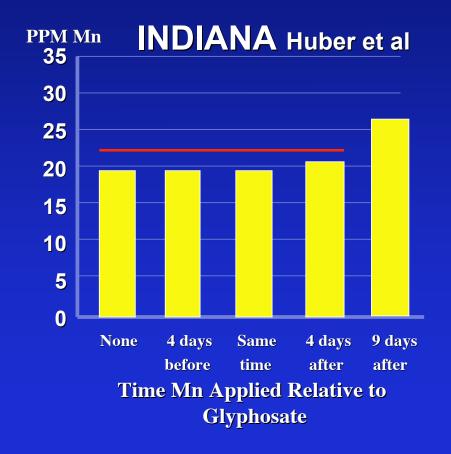
Many herbicides and pesticides are chelators

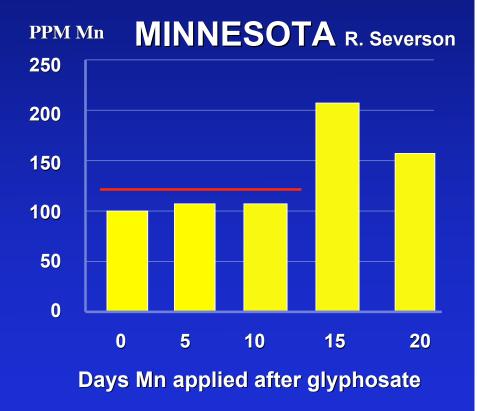
Understanding the Characteristics of Glyphosate Glyphosate has Changed Agriculture for 30+Years

A strong chemical chelator

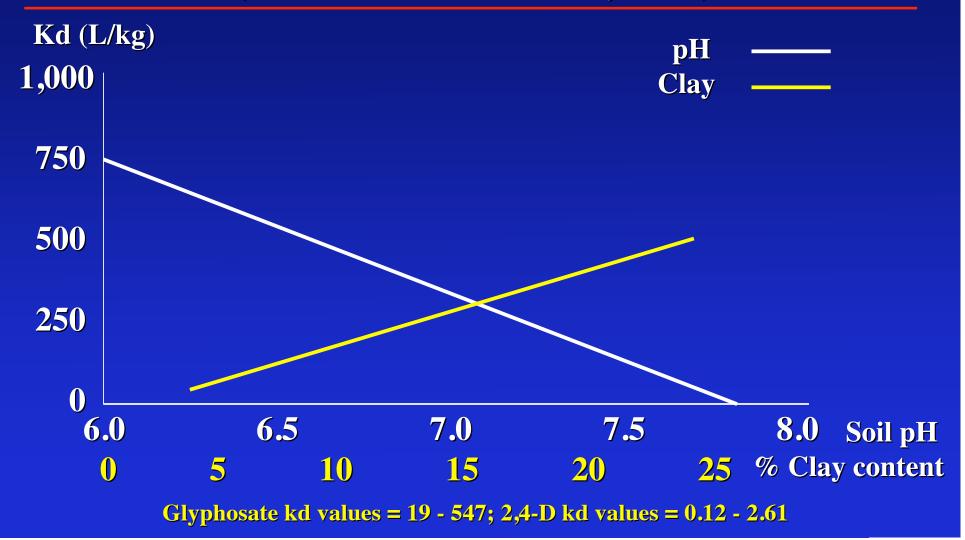
Chelates minerals in the spray tank Chelates minerals in the plant Chelates minerals in the soil Reduces: B, Ca, Co, Cu, Fe, K, Mg, Mn, Ni,

Non-specific herbicidal effect


Glyphosate

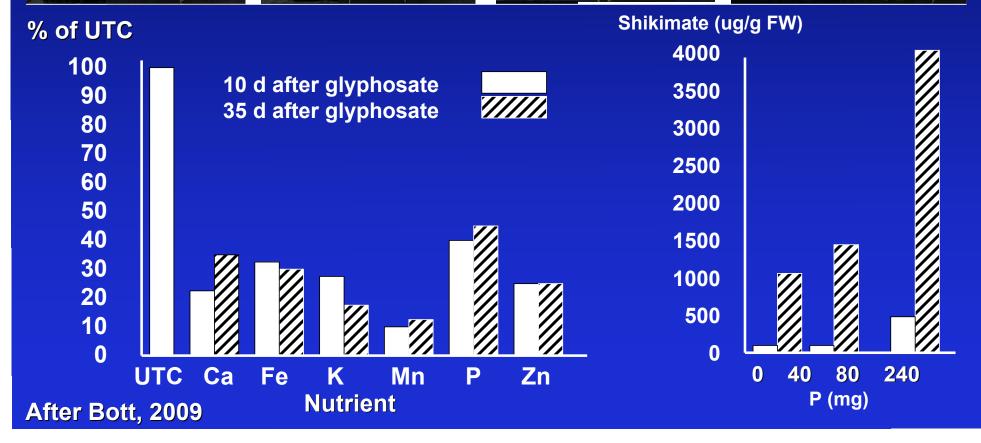

Chelating stability constants						
	of glyphosate					
		[<u>ML]</u>	[MHL]	[<u>ML2</u>]		
<u>Met</u>	al ion	[M][L]	[M][H][L]	[M][L2]		
	Mg2+	3.31	12.12	5.47		
	Ca2+	3.25	11.48	5.87		
	Mn2+	5.47	12.30	7.80		
Zn	Fe2+	6.87	12.79	11.18		
,	Cu2+	11.93	15.85	16.02		
	<u>Fe3+</u>	16.09	17.63	<u>23.00</u>		

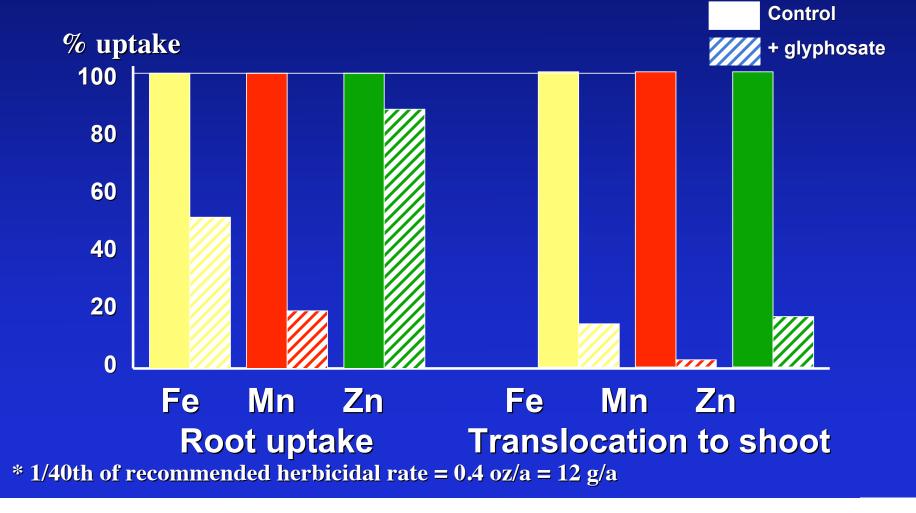
Glyphosate Immobilizes Manganese in Soybean


Glyphosate + Zn tank mix

Effect of Time of Mn Application AFTER Glyphosate on Tissue Mn

Effect of pH on Soil Sorption of Glyphosate (After Farenhorst et al, 2009)


Effect of Phosphorus Desorption of Glyphosate in Soil on Soybean growth and Nutrient Content



Effect of Residual or 'drift' Glyphosate on Percent Nutrient Uptake and Translocation by Plants After Eker et al 2006*

Mn Oxidation/Reduction in Soybean Rhizosphere Soil

Fungal Mn oxidation in soil (increased virulence)

Manganese Oxidation in Soybean Rhizosphere

In soybean rhizosphere soil (3 wks after glyphosate applied):					
Mn Re	ducing Organisms	Oxidizing Organisms			
Control (no glyphosate)	7,250*	750			
+ Glyphosate	740	13,250			
*Colonies per gram of s	oil				

Foliar application of glyphosate

Systemic movement throughout the plant

Chelation of micronutrients

Intensifies stress

Accumulation of glyphosate in soil (fast sorption; slow degradation)

Desorbed by phosphorus

Residual soil and residue effects

Glyphosate toxicity to:

N-fixing microbes Bacterial shikimate pathway Mycorrhizae Biological control organisms Earthworms PGPR organisms Accumulation of glyphosate in meristematic tissues (shoot, reproductive, and roots)

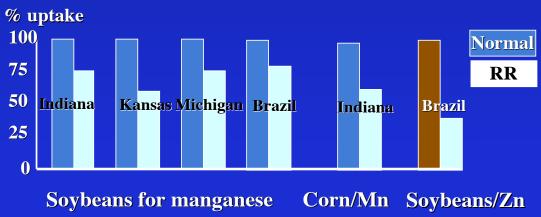
Translocation of glyphosate from shoot to root and release into the rhizosphere

Toxicity to root tips by glyphosate or its toxic metabolites (e.g. AMPA)

Compromise of plant defense mechanisms

Comotion of soil-borne organisms: Soilborne pathogens - DISEASE Nutrient oxidizers (Fe, Mn, N) Microbial nutrient sinks (K, Mg)

Reduced availability or uptake of essential nutrients (Cu, Fe, K, Mg, Mn, N, Zn)


Schematic of glyphosate interactions in soil

What's Special About Glyphosate Tolerance? (Roundup Ready® Genes)

[Greatly expanded usage of glyphosate]

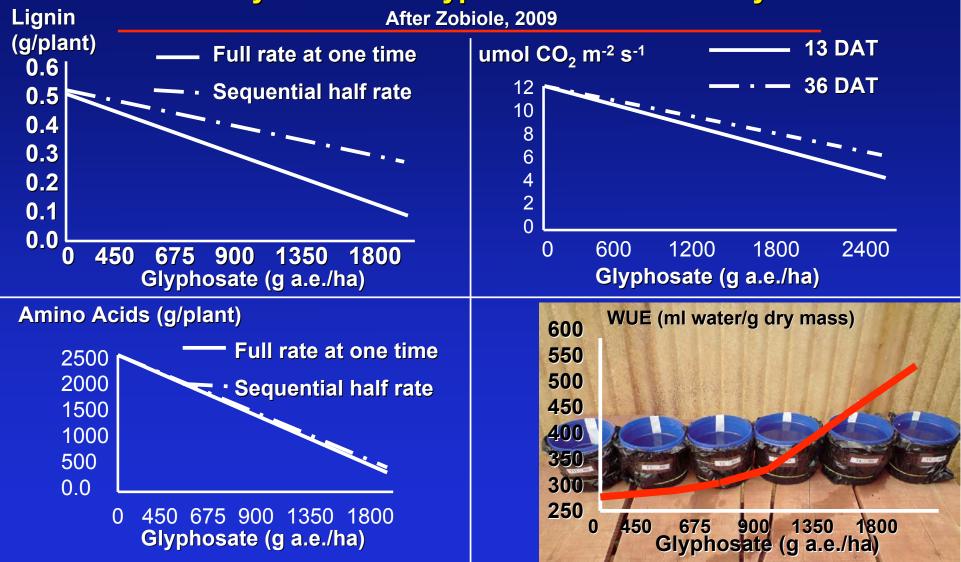
- <u>The technology inserts an alternative EPSPS enzyme</u> that is not blocked by glyphosate in *mature* tissue
- There is nothing in the RR plant that operates on the glyphosate applied to the plant!
 - Glyphosate chelation is not selective it immobilizes nutrients Ca, Co, Cu, Fe, K, Mg, Mn, Ni, Zn
 - Reduces nutrient uptake
- Can cause a"Yield Drag"
- It is there for the life of the plant

Evaluation of Roundup Ready® Yield Drag An Evaluation of 8,200 University-based Soybean Varietal Trials

Source: Benbrook. Ag Biotech Info. Net. Tech. Paper No. 1

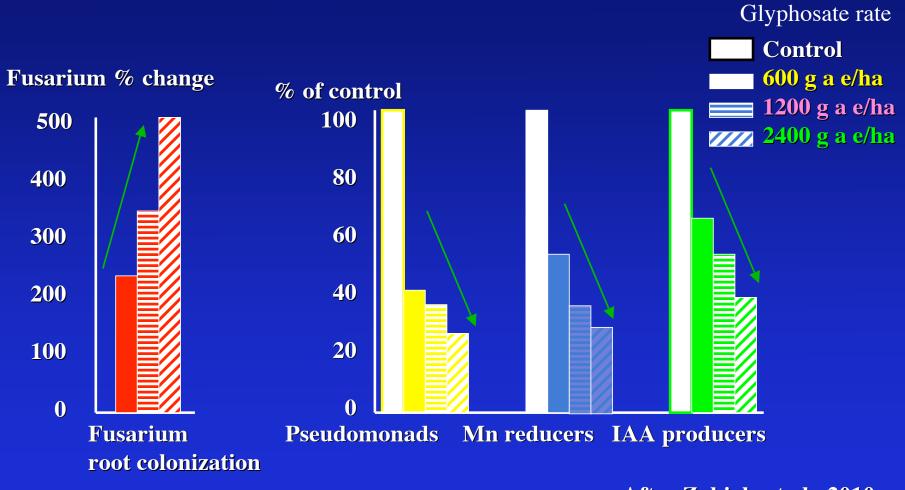
• 93 % showed lower yields for RR than non-GMO

- **-** 7 % no statistical difference
- **RR** averaged 6.7 % lower than non-GMO
- **RR** were 10 % lower than best Midwest varieties

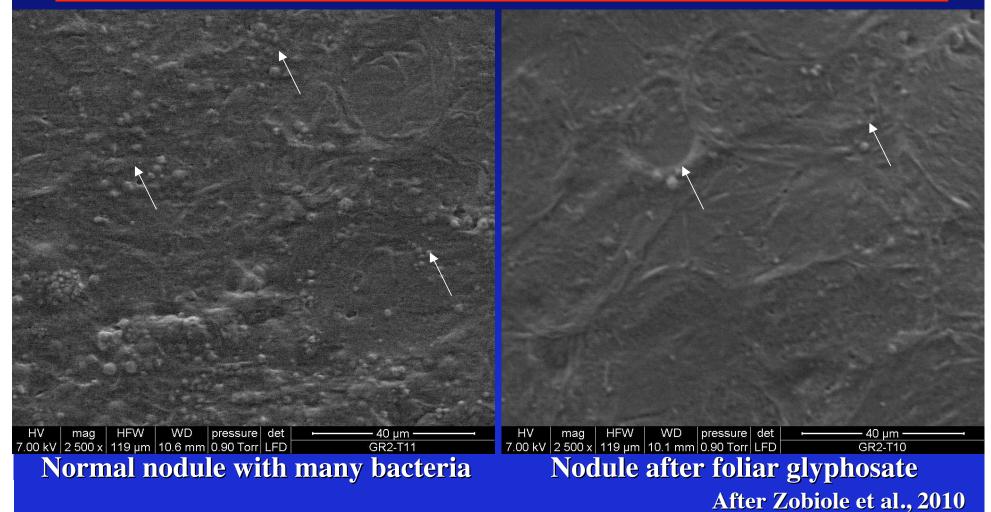

• RR yield drag could result in a 2.0-2.5 % lower national yield

 Potentially the most significant decline in a major crop ever associated with a single genetic modification

RR uses 2 - 5 times more herbicide than conventional 10 times more than multitactic


RR yield drag and Tech fee impose an indirect tax
 as much as 12 % of gross income per acre

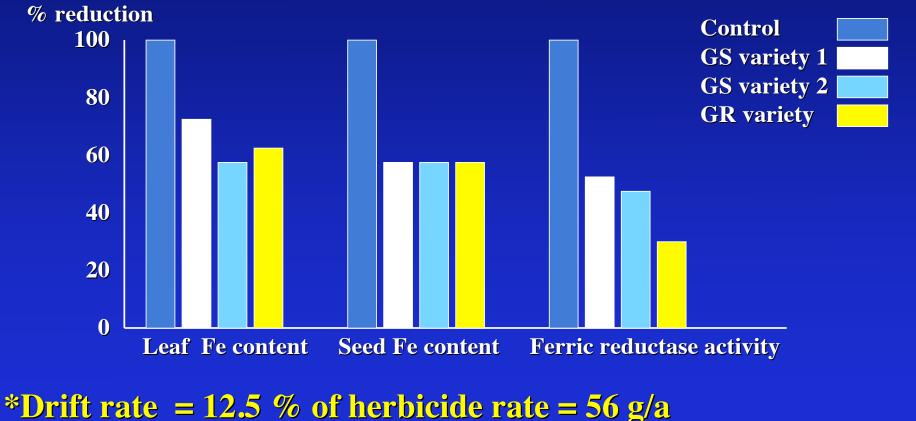
Effect of Glyphosate on Lignin, AA, Water Use Efficiency, and Photosynthesis of Glyphosate-Resistant Soybeans



Microbiocidal Activity of Glyphosate

After Zobiole et al., 2010

Effect of Glyphosate on Nodule Bradyrhizobium on Roundup Ready® Soybeans



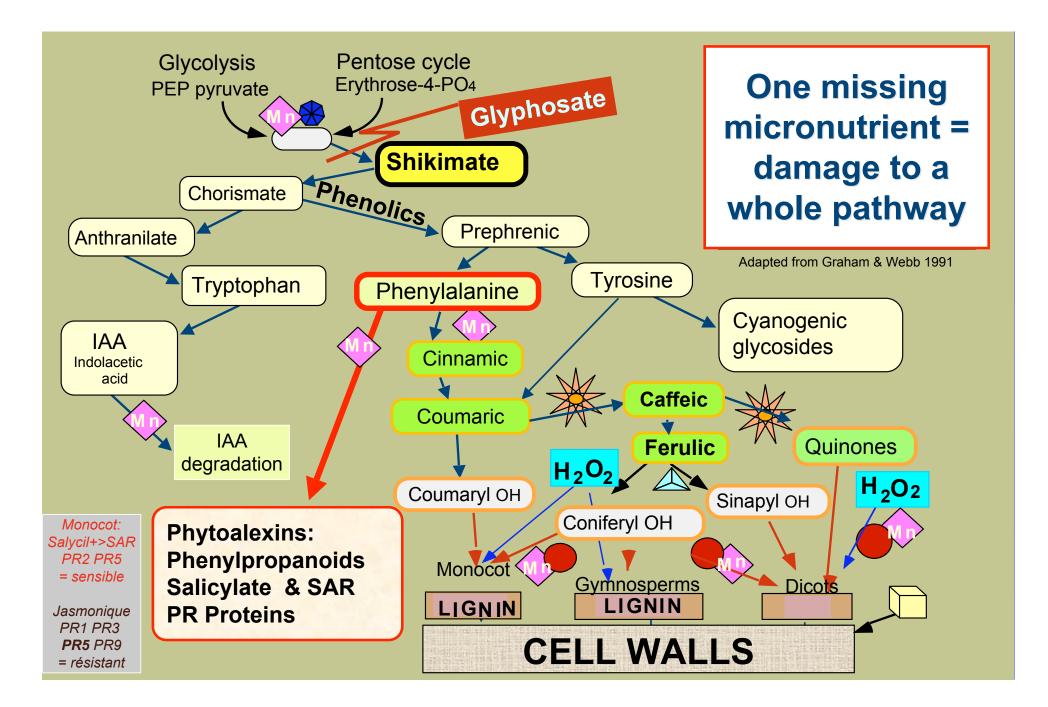
Reduced Nutrient Efficiency of Isogenic RR Soybeans (After Zobiole et al, 2008, 2009)

Isoline	Tissue:	Mn %	Zn %	
Normal		100	100	
Roundup I	83	53		
RR + glypł	nosate	76	45	

Copper, iron, and other essential nutrients Were also lower in the RR isoline and reduced further by glyphosate!

Effect of Glyphosate Drift* on Soybean Leaf and Seed Iron and Ferric Reductase Activity

After Bellaloui et al, 2009


<u>% Mineral Reduction</u> in Tissue of Roundup Ready® Soybeans Treated with Glyphosate

Plant tissue	Ca	Mg	Fe	Mn	Zn	Cu
Young leaves	<u>40</u>	<u>28</u>	7	<u>29</u>	NS	NS
Mature leaves	<u>30</u>	<u>34</u>	<u>18</u>	<u>48</u>	<u>30</u>	<u>27</u>
Mature grain	<u>26</u>	<u>13</u>	<u>49</u>	<u>45</u>	5	
	6% 4%			Af	ter Cak	mak et al, 2009

9

Benefit of High Nutrient Seed After Andre Comeau, 2008

Herbicide action is by soil-borne fungal pathogens Glyphosate Increases Disease Susceptibility

GlyphosateGlyphosateNo glyphosateSterile soilField soilControl

Effect of glyphosate on susceptibility to anthracnose. A) hypersensitive response; B) non-limited response after glyphosate is applied.

After Rahe and Johal, 1988; 1990; See also Johal and Huber, 1999; Schafer et al, 2009.

Role of Soil Pathogens in Response to Glyphosate

• Fusarium and Pythium readily colonized susceptible giant ragweed roots when treated with glyphosate

- Resistant Giant Ragweed in unsterile soil were killed by a 4x rate of glyphosate, yet susceptible biotypes were not killed with the same rate in sterile soil.
- Dry weight of susceptible biotypes treated with Ridomil Gold was not changed by glyphosate
- Resistant giant ragweed biotypes were resistant to *Pythium*
- Glyphosate increased susceptibility to *Pythium*

Glyphosate susceptible biotype 4 DAT

PythiumPythium +GlyphosateControlglyphostecontrol

Glyphosate treated Susc. biotype Resistant biotype

Ridomií Ck Ridomíl Ck Fungicide

Schafer et al, 2010

Some Plant Pathogens Affected by Glyphosate

Pathogen

Pathogen

Increased: Botryospheara dothidea Corynespora cassicola Fusarium spp. <u>Fusarium</u> avenaceum F. graminearum F. oxysporum f. sp cubense F. oxysporum f.sp (canola) F. oxysporum f.sp. glycines F. oxysporum f.sp. vasinfectum F. solani f.sp. glycines F. solani f.sp. phaseoli F. solani f.sp. Pisi Gaeumannomyces graminis Magnaporthe grisea

Cercospora spp. Marasmius spp. Monosporascus cannonbalus Myrothecium verucaria Phaeomoniella chlamydospora Phytophthora spp. <u>Pythium</u> spp. Rhizoctonia solani Septoria nodorum Thielaviopsis bassicola Xylella fastidiosa Clavibacter nebraskensis Xanthomonas sterwartii **Decreased (obligate pathogens):**

Phykopsora pakyrhiza Puccinia graminis

<u>("Emerging" and "reemerging diseases")</u>

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms'

Some Diseases Increased by Glyphosate

Host plant	Disease	Pathogen	
Apple	Canker	Botryosphaeria dothidea	
Banana	Panama	Fusarium oxysporum f.sp. cubense	
Barley	Root rot	Magnaporthe grisea	
Beans	Root rot	Fusarium solani f.sp. phaseoli	
Bean	Damping off	<i>Pythium</i> spp.	
Bean	Root rot	Thielaviopsis bassicola	
Canola	Crown rot	<i>Fusarium</i> spp.	
Canola	Wilt	Fusarium oxysporum	
Citrus	CVC	Xylella fastidiosa	
Corn	Root and Ear rots	Fusarium spp.	
Cotton	Damping off	Pythium spp.	
Cotton	Bunchy top	Manganese deficiency	Fus
Cotton	Wilt	F. oxysporum f.sp. vasinfectum	Fus
Grape	Black goo	Phaeomoniella chlamydospora	
Melon	Root rot	Monosporascus cannonbalus	
Soybeans	Root rot, Target spo	ot Corynespora cassicola	
Soybeans	White mold	Sclerotina sclerotiorium	
Soybeans	SDS	Fusarium solani f.sp. glycines	
Sugar beet	Rots, Damping off	Rhizoctonia and Fusarium	1
Sugarcane	Decline	Marasmius spp.	
Tomato	Wilt (New)	Fusarium oxysporum f.sp. pisi	
Various	Canker	Phytophthora spp.	
Weeds	Biocontrol	Myrothecium verucaria	1
Wheat	Bare patch	Rhizoctonia solani	
Wheat	Glume blotch	Septoria spp.	
Wheat	Root rot	Fusarium spp.	
Wheat	Head scab	Fusarium graminearum	Tak
Wheat	Take-all	Gaeumannomyces graminis	

Impact of Glyphosate on Take-all

RR so

Soybean herbicide plot Transient Mn immobilization In tissue with glyphosate

Glyphosate

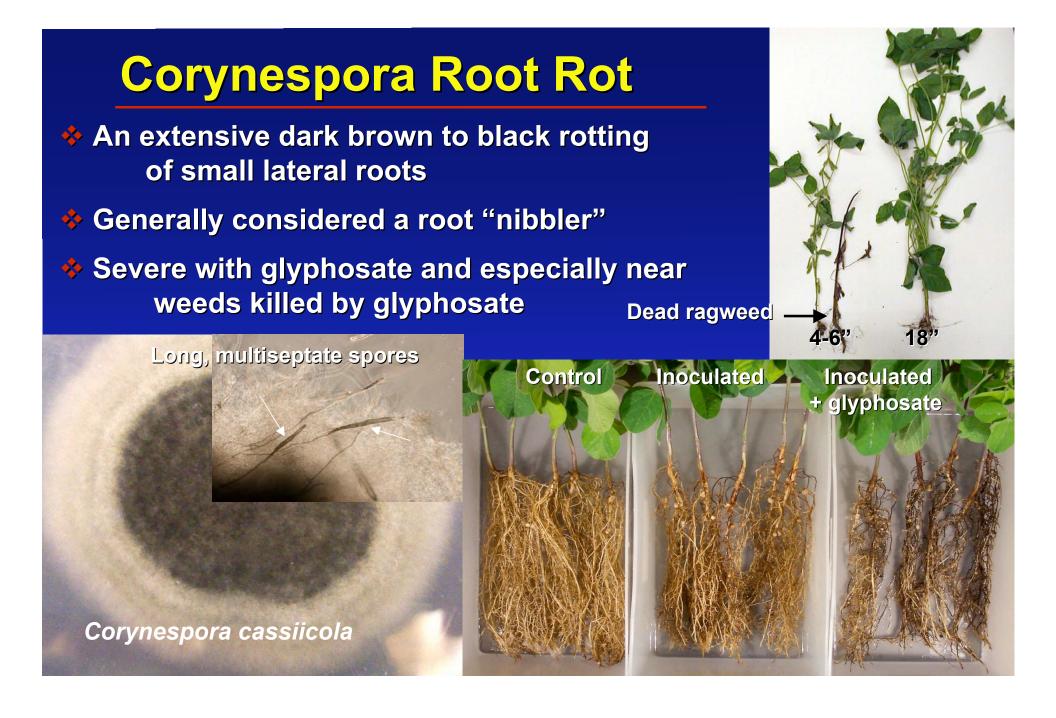
Conventional

Impact of Glyphosate on Take-all

Take-all of wheat after glyphosate to RR beans

Factors Predisposing to Fusarium Head Scab

(Fusarium spp.; Gibberella zeae)

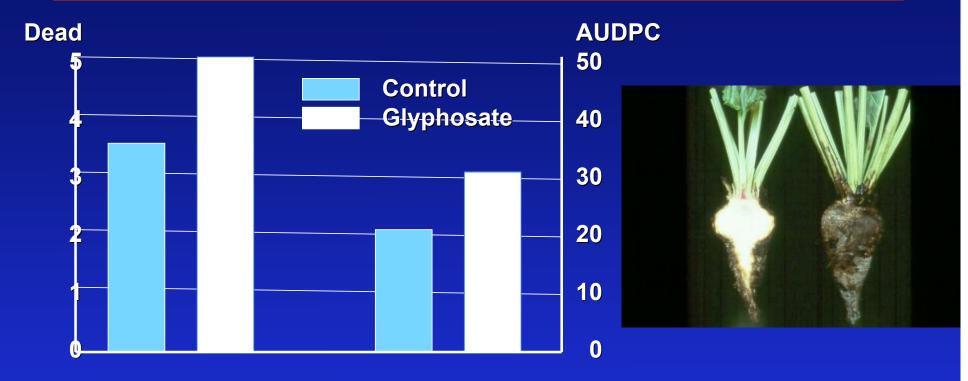

Environment was the most important factor in FHB development in eastern Saskatchewan, from 1999 to 2002

 Application of glyphosate formulations was the most important agronomic factor associated with higher FHB levels in spring wheat

 Positive association of glyphosate with FHB was not affected by environmental conditions as much as that of other agronomic factors...

(Fernandez et al. 2005, *Crop Sci. 45: 1908-1916*) (Fernandez et al., 2007, Crop Sci. 47:1574-1584)

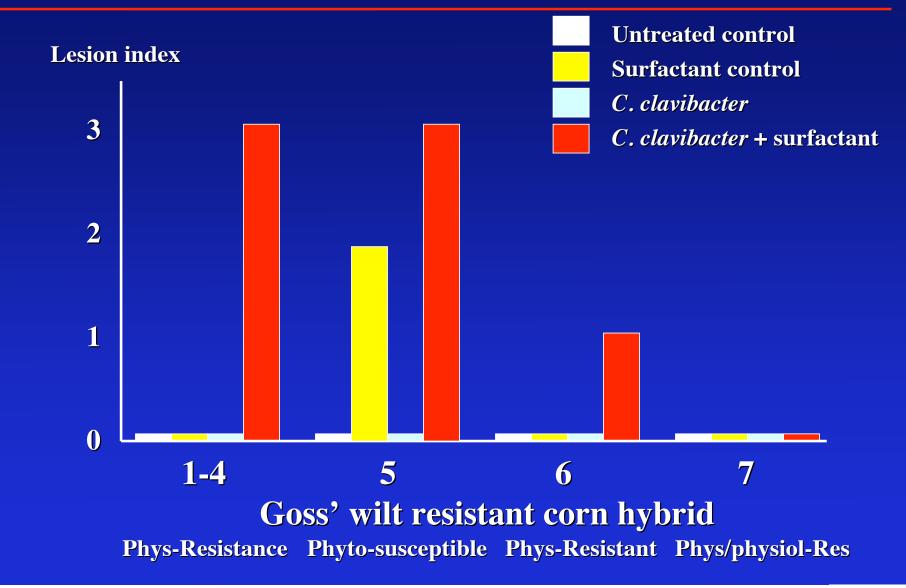
Number of % glyphosate Increase applications in head the <u>previous</u> scab three years None $\mathbf{00}$ 1 to 2 152 *** 3 to 6 295 ***



Glyphosate Predisposition to SDS, IA, 2010

No Glyphosate burn down

Glyphosate burn down


Impact of Glyphosate on Sugar Beet

Rhizoctonia B4RR variety *Fusarium* B4RR variety

"Precautions need to be taken when certain soil-borne diseases are present if weed management for sugar beet is to include post-emergence glyphosate treatments." Larson et al., 2006

Effect of Surfactants on Goss' Wilt Infection

Early death of wheat After RR RR soybean soybean + No glyphosate glyphosate Take-all

Soybean

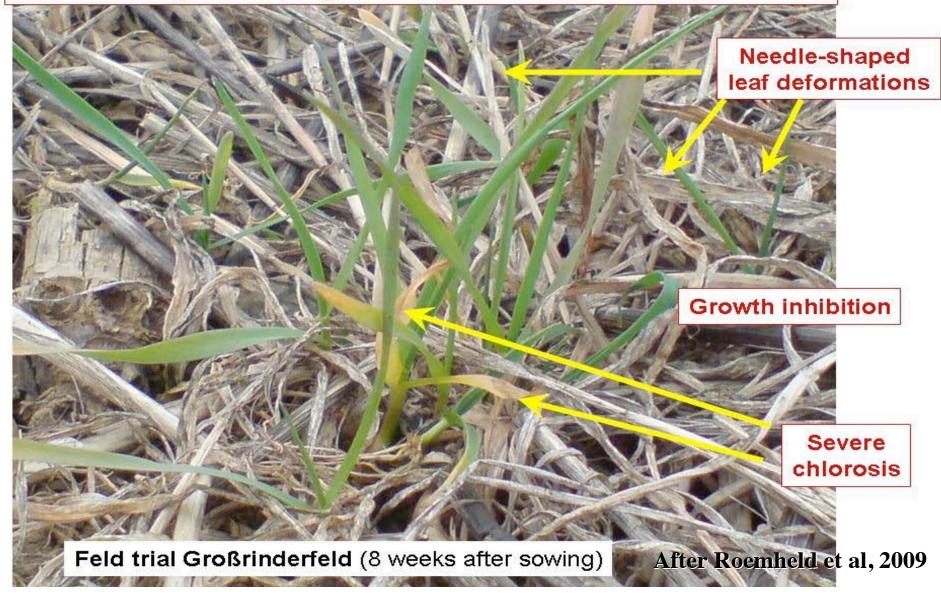
Recognizing the

, Interactions,

Inoculated Inoculated + glyphosate

Corynespora root rot

Control



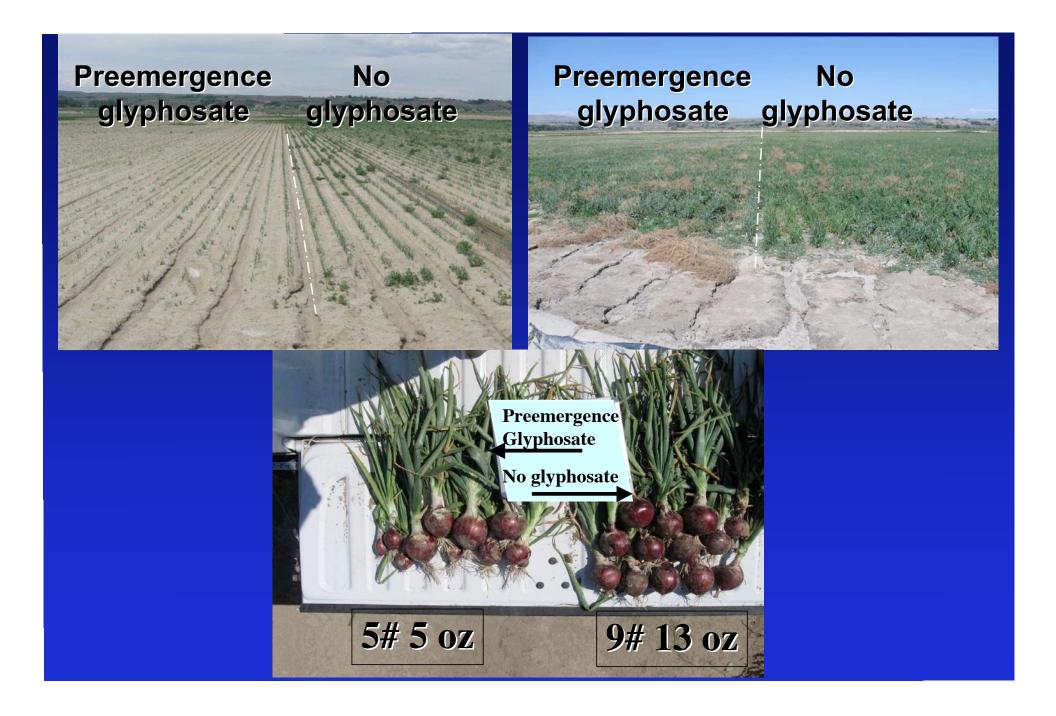
Some SYMPTOMS of Glyphosate Damage

(Sub-herbicidal depending on rate and length of exposure)

- ✓ Low vigor, stunting, slow growth
- ✓ Leaf chlorosis (yellowing) complete or between the veins
- Leaf mottling sometimes with necrotic flecks or spots
- Leaf distortion small, curling, strap, wrinkling, 'mouse ear'
 Abnormal stem proliferation ('witches broom')
- Bud, fruit abortion
- Retarded regrowth after cutting (alfalfa, perennial plants)
- ✓ Lower yields, lower mineral value
- Predisposition to infectious diseases NUMEROUS!
- Predisposition to insect damage
- ✓ Induced abiotic diseases drought, winter kill, sun scald
- Root stunting, poor growth, inefficient N-fixation and uptake
- **Bark cracking** after Univ. of Hawaii; Univ. of Connecticut, Ohio State University

Close up of field symptoms of plant damage in treatments with short waiting times (1 d) after Glyphosate pre-crop application

Effect of Planting Delay after Glyphosate (**Residual Glyphosate in Soil**)


Winter Wheat

14 days after glyphosate 'burn-down' 2 days after glyphosate 'burn-down' Weiss et al., 2008

Long-term Effect of Glyphosate

Field observations in winter wheat production systems in 2008 & 2009 point to potential negative side-effects of long-term glyphosate use.

Poor Boll Retention, Sterile Locules in Cotton. WHY?

Poor Bud Break, Small Leaves, Stem Epinasty Nickel Deficiency

Plus Ni (pre bud break)

Pecan Same symptoms from glyphosate on coffee, blue berries, etc. after B. Wood, 2007

Special Considerations in Fertilizing RR Crops

Two factors: 1) Chemical; 2) gene

1. Providing nutrient availability for yield and quality

Compensate for reduced plant efficiency Compensate for reduced soil availability [Timing and formulation are important]

2. Detoxifying residual glyphosate

In meristematic root, stem, flower tissues, etc. In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.) Disease control related (nutrition, pathogen antagonists, etc.) Biological amendment (N-fixers, PGPRs, etc.)

- 4. Increasing plant resistance to diseases and toxins Nutrient-related pathways (Shikimate, AA, CHO, etc.)
- **5.** Judicious use of glyphosate

Yield Response of Roundup Ready® Soybeans to Micronutrients

	Indiana	Michigan	Kansas	Minnesota
Treatment		Yield (b)	u/a)	
Untreated	46	24	77	33
Glyphosate only	57	33	65	8
Glyphosate + Micronutrient	75 Mn	56 Mn	78 Mn	19 Fe

Interaction of seed-applied Fe and glyphosate application on Fe deficiency chlorosis in soybeans; Minnesota, USA

Visual chloTreatment[1 = green;				Grain (bu	9	
		- Fe	+ Fe	- Fe	+ Fe	,
Control (no herbio	cide)	3.1	2.8	33	56	
Glyphosate		3.7	3.3	8	19	
		1 0004 0		nt Nutrition E0.0	70.004	

Jolley et al., 2004, Soil Sci. and Plant Nutrition 50:973-981

Effect of Glyphosate on Roundup Ready© Corn

Colorado State University, 2007 Mike Bartolo, Sr. Res. Scientist

Treatment	Yield (bu/a)	% of control
Untreated*	234 a	100
Glyphosate**	195 d	83
<mark>Glyphosate</mark> + Zn, Mn	221 b	94
Glyphosate + Mn, Zn, Fe, B	208 с	89

*Hand weeded, **1 lb a.i. + 1 pt AMS per acre Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less

Response of Roundup Ready© Corn to Zn & Mn, 2007*

NDSU Carrington

Treatment	Yield (bu/a)	
Glyphosate control	144	
Zn seed Treatment	156	
Foliar applied Zn	158	
Foliar applied Zn+Mn	173	
Seed + Foliar Zn	175	
Soil granular Zn sulfate	e 167	
* All treatments received glyphosate		

Herbicide Affects on RR Corn Yield Indiana, 2010

RR Corn Hybrid

Herbicide	6733HXR	6179VT3	5442VT3	5716A3
Surestart (11")	266 *	216	223	219
Cadet (V6)	227	219	219	213
Laudis (V6)	224	218	214	214
Integrity (pre-E	L) 231	217	215	204
Glyphosate (V6) 212	207	206	210
Steadfast (V6)	207	204	201	196
Status (V6)	187	195	193	192

*125.6 % of glyphosate yield (yields in bu/a - rounded) All plots were hand weeded

Glyphosate & Manganese Effects on Cotton

Untreated Check (conventional herbicide)

Effect of glyphosate and Manganese on Cotton Yield (Texas)

Treatment	% chlorotic plants	# seed cotton
Conventional herbicide	e 5	4885
Glyphosate	97	2237
Glyphosate + Mn, Zn after Ronnie P	2 hillips, 2009	4693

Citrus Variegated Chlorosis Predisposition to CVC (*Xylella fastidiosa*) by glyphosate

Effect of Tillage on Glyphosate Injury & Yield

Field History: 8 years Cons. Res. Program 2 qt blyphosate burndown 2008 1 qt glyphosate on RR corn 2009 1 qt glyphosate burndown 2010

No-tillFall chiselPhotos: Nesters Farm ServicesYield: 40 bu/a60 bu/aImage: Construction of the service of the servic

Glyphosate Resistant Weeds

It starts this way >>>> and >>>> Develops into this

Increased Disease on Crops in the Rotation

 Beans (*P. vulgaris*) after RR sugar beets Fusarium root rot Rhizoctonia hypocotyl rot

Alfalfa after RR corn or RR soybeans

- Fusarium root and crown rot Phytophthora root and crown rot Aphanomyces root rot
- Wheat after RR canola
 - Fusarium root and crown rot Fusarium head scab
- Potatoes after RR corn (RR sugar beets?)
 - Verticillium wilt Fusarium dry rot Rhizoctonia stolon canker
 - **Common scab**

Residual Soil & Crop Sequence Effects of Glyphosate

Severe Verticillium wilt after 1 year of RR corn (left) Idaho, 2009

Mild Verticillium after wheat (no Glyphosate, right)

Crop sequence effect on Mn⁺²

	Rotation	Extractable Mn
一正法	Continuous Corn	130 ppm
N.	Roundup Ready® c	orn 60 ppm
	Continuous soybean	ns 64 ppm
	Soybean, wheat, <u>co</u> r	
	Wheat, corn, <u>soybea</u>	<u>an</u> 79 ppm

Food and Feed Safety Concerns

Increased levels of mycotoxins

- Fusarium toxins (DON, NIV, ZEA)
- Aflatoxins

Nutrient deficiency

- Cu, Fe, Mg, <u>Mn</u>, Zn

Gene flow

- Weeds
- Soil microbes
- Intestinal microbes

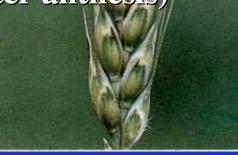
Direct toxicity of residual glyphosate

- Infertility endocrine system
- Cell death Disease resistance
- Allergenic reactions to foreign proteins

Carmen, et al., 2010 Fernandez, et al., 2009 Gasnier, et al., 2009 Heiman, 2010 Seralini et al., 2010 Smith, 2010 Walsh, et al., 2000 Watts, 2009

Mycotoxins in Straw and Grain

Fusarium spp. act synergistically to cause death of glyphosate-treated plants


✓ Glyphosate-induced root colonization by *Fusarium* spp

 Toxins (DON, ZEA) produced in crown and translocated to stem and grain - Well above 'clinically significant' levels!

 Toxin concentrations not always correlated with *Fusarium* damaged grain (FDG) - [Strobilurin fungicides increase mycotoxins]

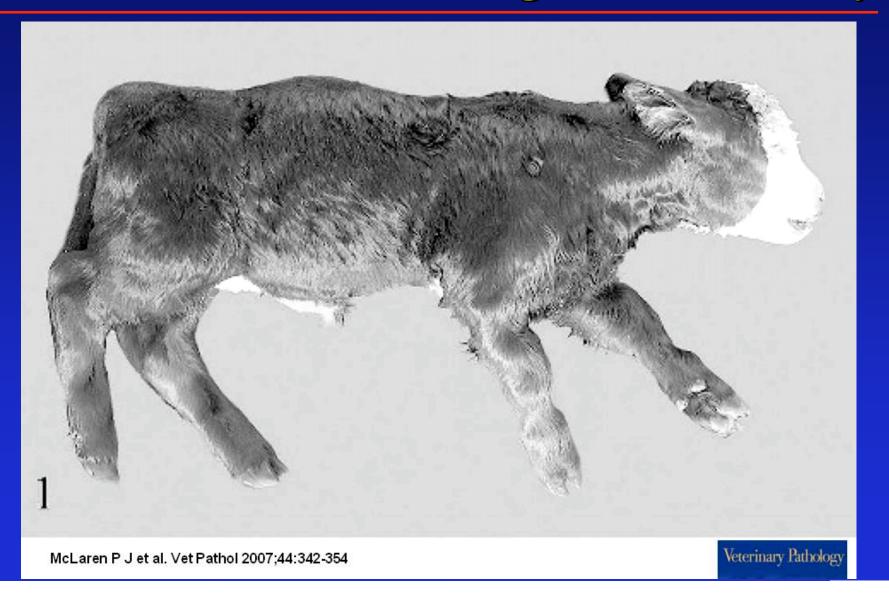
Head must be protected for 18 days (10 days after anthesis)

Deoxynivalenol and Zaeralenone
Concentrations in plant partsToxin (ppm)GrainChaffStrawDeoxynivalenol4.716.93.5Zaeralenone4.442.955.5

Proc. Natl. FHB Forum 2009, Orlando, FL

% Reduction in Alfalfa Nutrients by Glyphosate*

Nutrient	% reduction compared with Non-RR
Nitrogen	13 %
Phosphorus	15 %
Potassium	46 %
Calcium	17 %
Magnesium	26 %
Sulfur	52 %
Boron	18 %
Copper	20 %
Iron	49 %
Manganese	31 %
Zinc	18 %

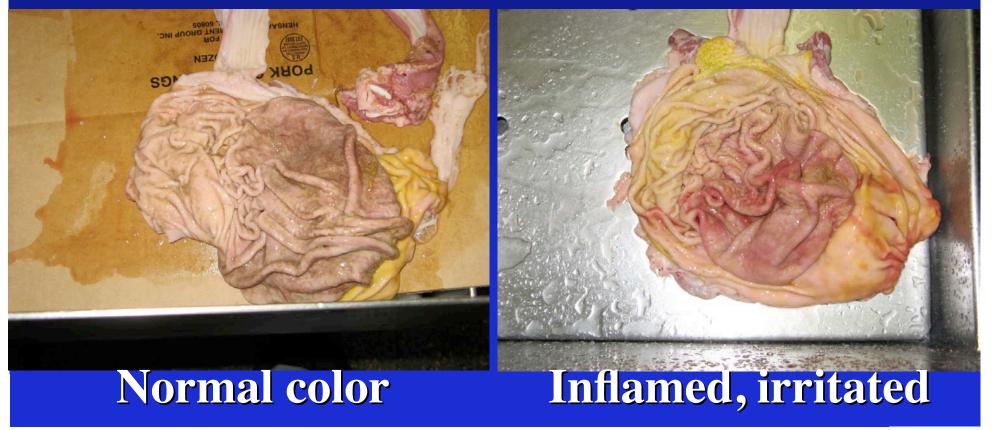

*Third year, second cutting analysis; Glyphosate applied one time in the previous year

Percent Decrease in Mineral Nutrients in Corn Silage - 2000 to 2010, Dairy One*

Mineral nutrient	Percent decrease
Calcium	22.0 % lower
Phosphorus	3.8 % lower
Magnesium	11.4 % lower
Potassium	16.1 % lower
Iron	5.2 % lower
Copper	9.6 % lower

*Based on 1629 samples

Stillborne Calf from Manganese Deficiency



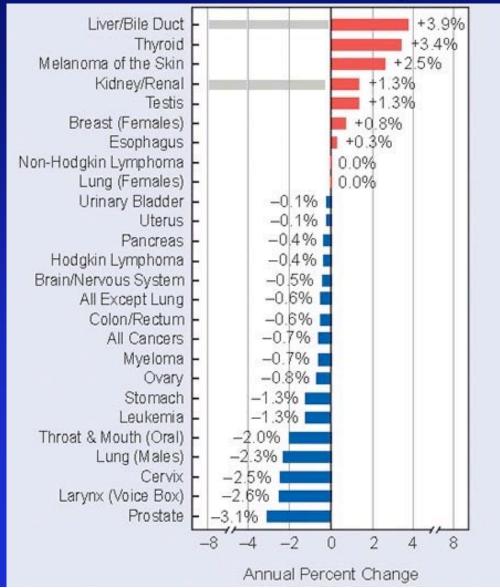
Effect of the GM "Gene" Proteins in Corn/Soybeans on Pig Stomachs

After Carman et al., 2010

Non-GMO Feed

GMO Feed

And the Mice Prefer.....

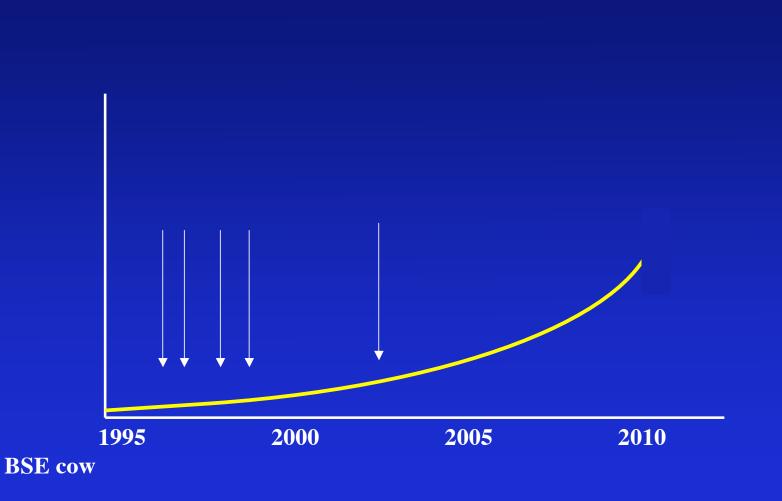

GMO Corn

Annual % Change in Cancers

Target Tissues for glyphosate; Liver Kidney Testicle Hormone system Bone (Ca, Mn chelation?) Thyroid (Mn chelation?)

Hello, my name is . I am a veterinarian in Michigan.

I am working with a sow herd that has had elevated death loss for over two years and very poor reproductive performance for the last 6-8 months. I have done extensive diagnostics (primarily at Iowa) State) and can find nothing infectious that is routinely found to explain the problem.


I suspect there is a toxin involved; I have done extensive testing on liver, feed, and water but can find no evidence of those compounds either. We have had a few individuals mention that the use of GMO crops could be contributing to these problems.

The producer recently saw your article to the secretary of agriculture and forwarded it to me. We are very intrigued by the organism you mention. Could you tell me if any laboratory is looking for this agent? How do we go about finding it? We are at the end of our rope and cannot figure this out. Any help you can give us would be greatly appreciated.

Late term Spontaneous abortion

Generalized Graph of Incidence

What is Known About the Organism

Characteristics

- Very small (EM visible at 38,000 X) (size of a virus)
- Filterable passes through a bacterial filter
- Culturable self replicating
- Common in nature (ubiquitous? in soil) IA, IL, KY, MI, NE, ND, WI
- Unknown taxonomic position (genetic sequencing in progress)
- Synergist with bacteria (gram+, e.g. alfa-Streptococcus) and other microbes

Infectious nature - infects animals, plants, fungi (systemic)

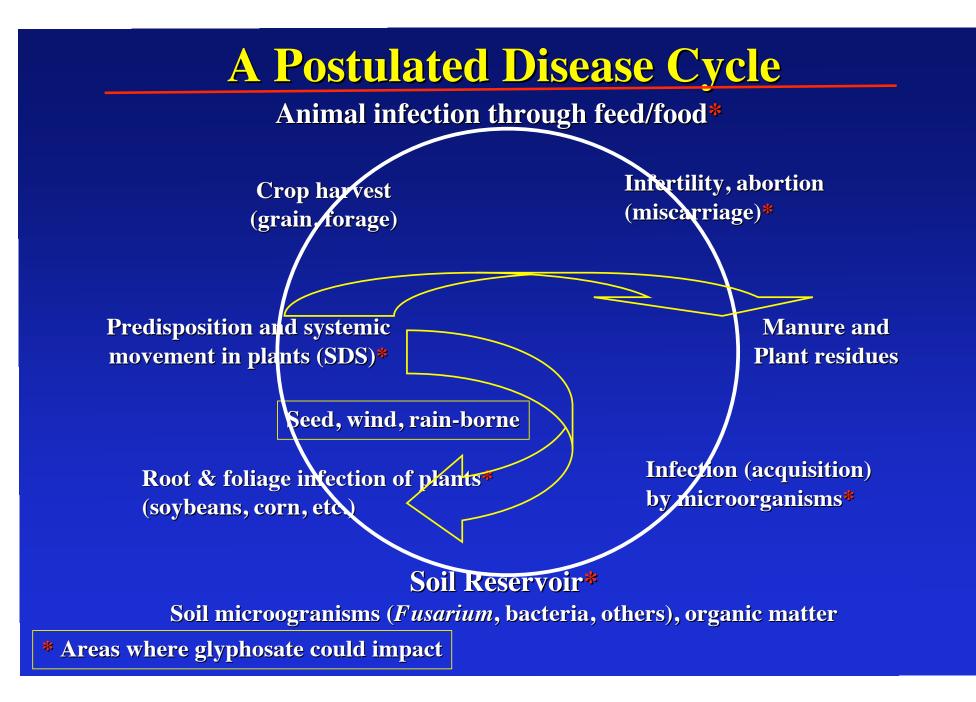
> Affect in animals (horses, cattle, pigs, poultry)

- Causes infertility
- Causes spontaneous abortions (miscarriage-man)
- Death of chicken embryos
- In milk from cows fed high infected feed

Affect in plants

- High population in 'scorch' type diseases
- 'Extends' symptoms of Goss' wilt (corn) and SDS (soybean)
- Seed-borne (?) in soybean seed and feed/food products

Occurrence


•Verified in IA, IL, KY, NE, ND, SD, WI

Sources: <u>'Environmental'</u>

Soybean meal Wheatlage, haylage, silage Corn leaves and silage SDS Soybean plants Oak 'scorch' leaves Manure Animal tissue Placental tissue Amniotic fluid Semen Stomach contents Eggs Milk

Soil

Fusarium solani fsp glycines mycelium

Potential Interactions of 'new organism' with Glyphosate

Glyphosate affects plants (predisposes):

Inhibits plant defenses Reduces nutrient content and efficiency [chemical and RR gene(s)]

Increases root colonization

Increases membrane permeability

Surfactant affect for penetration of natural openings and wounds

Glyphosate affects animals (predisposes):

Inhibits aramatose system – endocrine hormone system Toxic to liver, placental, testicular, and kidney cells Reduced defense - liver function [from lower Mn, etc. in feed]

Glyphosate affects pathogens:

Stimulates growth and virulence (direct/indirect) Favors synergism, infection (as a carrier) Increases movement into plant tissues (water film for plant infection)

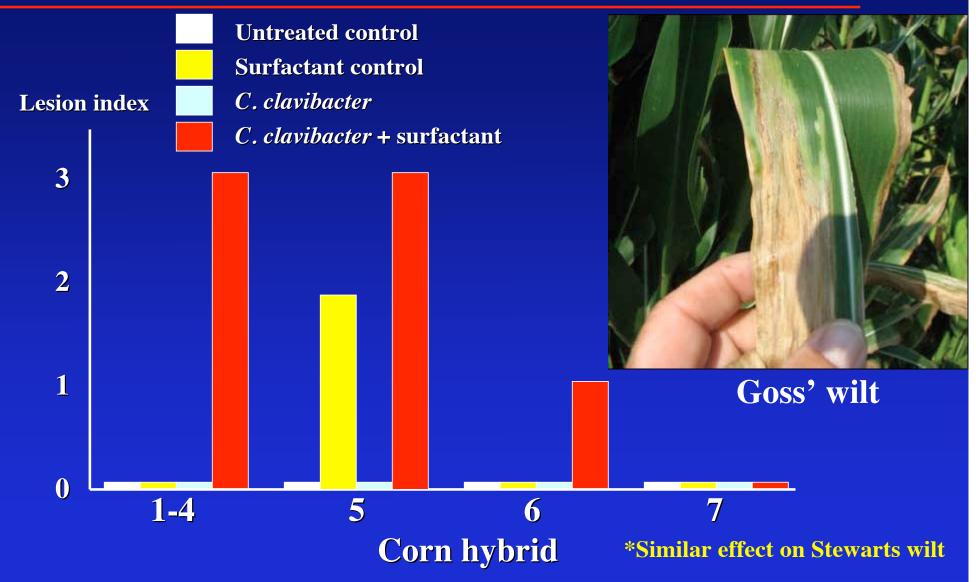
Glyphosate affects the environment:

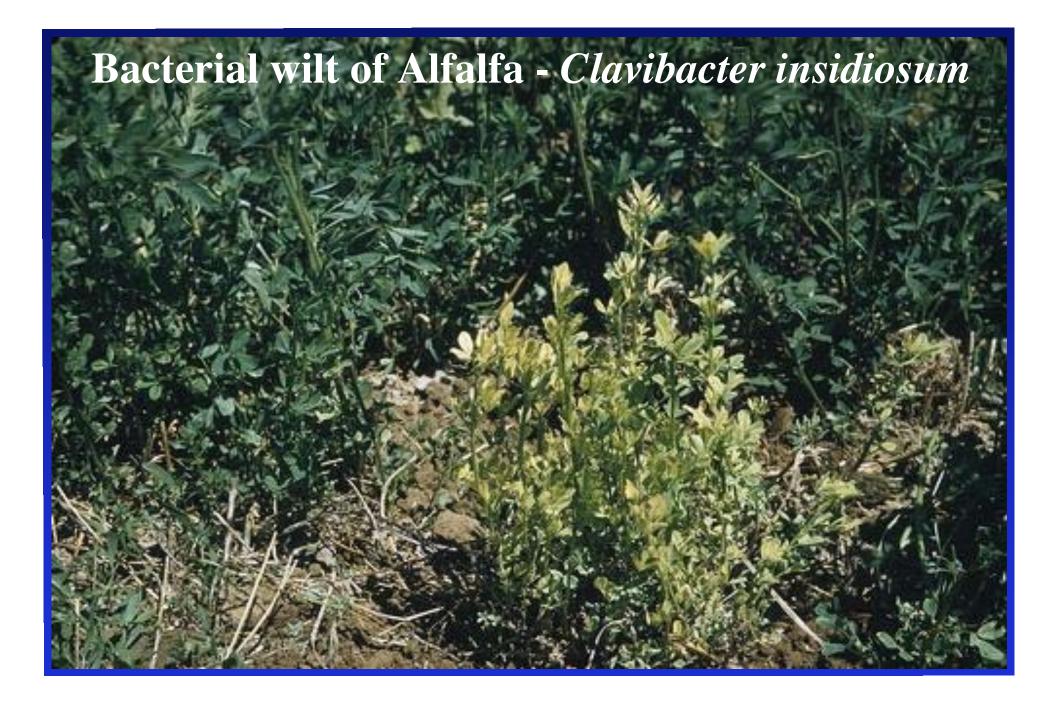
Toxic to soil microbes that constrain plant pathogens Micronutrient availability reduced

What has Changed?

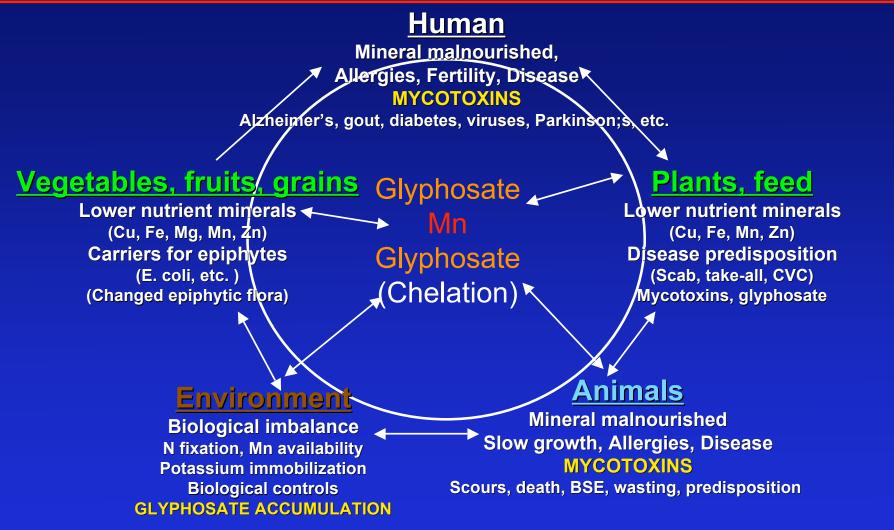
Change:

Increased disease New diseases Low mineral nutrition Resistant weeds


Precedent:


Victoria blight (oats) H. carbonum disease (toxin) Texas male-sterile gene (corn leaf blight epidemic) Glyphosate-resistance gene?????

Why (vulnerability)?


Predisposition Direct toxicity Gene flow No relief - single source approach

Effect of Surfactants on Goss' Wilt* Infection

Potential Far-Reaching Impact of Glyphosate

Make Sure You Provide the Food!

